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Data-Intensive Computing

A
s the amount of scientific and social data 
continues to grow, researchers in a multitude 
of domains face challenges associated with 
storing, indexing, retrieving, assimilating, 
and synthesizing raw data into actionable 

information. Combining techniques from computer sci-
ence, statistics, and applied math, data-intensive com-
puting involves developing and optimizing algorithms 
and systems that interact closely with large volumes of 
data.

Scientific applications that read and write large data 
sets often perform poorly and don’t scale well on present-
day computing systems. Many data-intensive applica-
tions are data-path-oriented, making little use of branch 
prediction and speculation hardware in the CPU. These 
applications are well suited to streaming data access 
and can’t effectively use the sophisticated on-chip cache 
hierarchy. Their ability to process large data sets is ham-
pered by orders-of-magnitude mismatches between disk, 
memory, and CPU bandwidths.

Emerging technologies can improve data-intensive 
algorithms’ performance, at reasonable cost in develop-
ment time, by an order of magnitude over the state of 
the art. Coprocessors such as graphics processor units 
(GPUs) and field-programmable gate arrays (FPGAs) can 
significantly speed up some application classes in which 

data-path-oriented computing is dominant. Additionally, 
these coprocessors interact with application-controlled 
on-chip memory rather than a traditional cache. 

To alleviate the 10-to-100 factor mismatch in band-
width between disk and memory, we investigated an I/O 
system built from a large, parallel array of solid-state 
storage devices. While containing the same NAND flash 
chips as USB drives, such I/O arrays achieve significantly 
higher bandwidth and lower latency than USB drives 
through parallel access to an array of devices. 

To quantify these technologies’ merits, we’ve created 
a small collection of data-intensive benchmarks selected 
from applications in data analysis and science. These 
benchmarks draw from three data types: scientific imag-
ery, unstructured text, and semantic graphs representing 
networks of relationships. Our results demonstrate that 
augmenting commodity processors to exploit these tech-
nologies can improve performance 2 to 17 times.

COPROCESSORS
Coprocessors designed for data-oriented computing 

can deliver orders-of-magnitude better performance 
than general-purpose microprocessors on data-path-
centric compute kernels. We evaluated the benefits of 
two coprocessor architectures: graphics processors and 
reconfigurable hardware.

Data-intensive problems challenge conventional computing architectures with demanding CPU, 

memory, and I/O requirements. Experiments with three benchmarks suggest that emerging 

hardware technologies can significantly boost performance of a wide range of applications by 

increasing compute cycles and bandwidth and reducing latency.
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Graphics processors 
The GPU, a commodity product that accelerates the 

rendering of images to the display, has been highly opti-
mized for the computer-game industry to offer realis-
tic 3D rendering of fast-moving scenes. It offers a high 
degree of data-parallel operation on floating-point data, 
up to hundreds of Gflops with a single PCI-E board. 
Responding to the need for general-purpose use of 
graphics hardware, programming interfaces such as 
Nvidia’s Compute Unified Device Architecture (www.
nvidia.com/object/cuda_home.html) expose the process-
ing cores to parallel GPU algorithms.

In this work, we used the Nvidia GeForce 8800 GTX 
GPU. In contrast to previous-generation fixed-function 
graphics pipelines, the 8800 has an array of 128 IEEE 
754-compliant scalar floating-point units clocked at 
1.35 GHz and grouped into clusters of 16. It has 768 
Mbytes of RAM with a 384-bit memory interface and 
86.4-GBps memory bandwidth. Our GPU benchmark 
is written in Cg, which compiles into an OpenGL-sup-
ported assembly code and is vendor-neutral. The Nvidia 
card is attached to a 3.0-GHz dual-core Xeon processor 
via a PCI-E 16x slot.

Reconfigurable hardware 
FPGA-based reconfigurable hardware provides direct 

execution of an algorithm. Unlike fixed-function hard-
ware, reconfigurable logic can be reprogrammed an 
unlimited number of times, allowing different algo-
rithms to execute on the same device. 

The FPGA is a complex system-on-a-chip that com-
bines processors, on-chip RAM, specialized arithmetic 
units, and reconfigurable logic. When an algorithm ker-
nel is mapped onto its hardware resources, an FPGA can 
achieve a 10-to-100 times speedup over equivalent soft-
ware. Another advantage of FPGAs is that, because the 
device is often used to communicate to the data source, 
application-specific logic can be inserted into a pipelined 
data stream. FPGAs are already available in the market-
place for data-intensive computing tasks such as bioin-
formatics, text processing, and relational databases.

In these experiments, we used the XtremeData 
XD1000 system, shown in Figure 1, which features 
a dual-core 2.2-GHz Opteron CPU and an Altera 
Stratix EP2S180F1508-C3 FPGA. Each processor has 
4 Gbytes of dynamic RAM (DRAM); the FPGA addi-
tionally has 4 Mbytes of static RAM (SRAM). The 
Opteron and FPGA are on a dual-socket motherboard 
and communicate via a noncoherent HyperTransport 
(HT) link, with a bidirectional peak bandwidth of 1.6 
GBps. The actual bandwidth achieved depends on the 
FPGA clock speed. Bandwidth measurements of HT 
communication between a test FPGA design and the 
Opteron showed a rate of roughly 500 MBps. Our 
FPGA application is written in VHDL and compiled 
with the Altera tool chain.

Scientific Imagery Analysis
The Large Synoptic Survey Telescope (www.lsst.org) 

will be a ground-based 8.4-meter, 102-degree-field device 
sited on a mountain in Chile, and is expected to start 
producing astronomical data in 2012. Processing LSST 
data will be extremely challenging. The raw data from 
the 3-Gpixel charge-coupled device camera is collated 
at a rate of 500 MBps and must be preprocessed in real 
time. Lawrence Livermore National Laboratory (LLNL) 
is a member of the LSST Corporation and contributes to 
the project’s camera design and data management.1

Lanczos resampling filter
Our image-processing benchmark, the Lanczos resam-

pling filter, is derived from SWarp,2 an application used 
in parts of the LSST data-processing pipeline. SWarp 
transforms images from the telescope to the sky tem-
plate, making it possible to compare a newly acquired 
image with the associated sky template section and 
discover anomalies such as supernova explosions and 
gamma ray bursts.

The benchmark factors out a computationally expen-
sive and fundamental piece of the SWarp functionality 
for implementation: gray-scale image resampling. The 
input data is a gray-scale raster image (row-major order) 
with 8 or 16 bits per pixel. The output is a gray-scale 
image with 8, 16, or 32 bits per pixel. The typical SWarp 
execution for LSST includes resampling a 16-bit input 
into a 32-bit, floating-point output. 

It took us approximately one month to develop the 
Lanczos filter, including profiling SWarp to select the 
benchmark, designing, writing, debugging, and perfor-
mance tuning.

Computational kernels
For each output pixel, SWarp applies a filter kernel 

that takes a weighted combination of the input pixels, 
specifically a Lanczos filter, to combine either 16 (4 × 
4), 36 (6 × 6), or 64 (8 × 8) input pixels to generate each 

FPGA Opteron

SRAM

HyperTransport

DRAMDRAM

Figure 1. XtremeData XD1000 architecture. The system features 
a dual-core 2.2-GHz Opteron CPU and an Altera Stratix 
EP2S180F1508-C3 FPGA that communicate via a noncoherent 
HT link. Each processor has 4 Gbytes of DRAM; the FPGA 
additionally has 4 Mbytes of SRAM. 
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output pixel. The Lanczos filter kernel is convolved with 
the input pixels to generate the output pixels. Each input 
pixel has a location (x, y) relative to the projection of an 
output pixel into the input image. The weight used for 
that input pixel’s contribution to the output pixel is
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where k can be 2, 3, or 4 (the so-called Lanczos2, Lanc-
zos3, and Lanczos4 kernels), using 16, 36, or 64 input 
pixels per output pixel, respectively. We’ve written four 
resampling codes, one for each of these Lanczos convolu-
tion kernels, plus a simple nearest-neighbor filter, using 
NVIDIA’s Cg programming language. 

The Cg compiler compiles the code down to ARB 
Fragment Program code, an OpenGL-supported assem-
bly code for the fragment programs on current GPUs 
that is vendor neutral. Because we’re benchmarking the 
recent NVIDIA 8800 GTX, which is a scalar GPU, it’s 
not necessary to optimize the computation for the more 
traditional four-way vectorized GPU. The philosophy 
behind the NVIDIA 8XXX series is to provide more 
scalar cores (128) rather than fewer vector cores, facili-
tating full utilization. 

I/O methods
The SWarp implementation, which employs memory-

mapped I/O for large files, processes output pixels in 
raster order, matching the order of the data in the disk 
file; consequently, output is purely streaming, whereas 
input requires more random access. However, to better 
leverage the GPU’s significant processing power, mem-

ory bandwidth, and data-caching 
capability, we programmed the 
Lanczos filter to produce the out-
put data in 2D tiles. The bench-
mark generates each output pixel 
in the tile in a separate execution 
thread on the GPU.

Data flows from disk to main 
memory, main memory to GPU 
memory, GPU memory back to 
main memory, and main mem-
ory back to disk. In each case, 
the program specifies the data to 
be moved from source to target 
location as a 2D rectangle. If this 
rectangle’s width is the same as 
that of the source and target, the 
data copy can occur as a single, 
contiguous stream. However, if 
the widths differ, the data copy 
must occur in a strided fashion, 
contiguous only at the level of 

individual rows. 
Strided copies incur additional overhead, the largest of 

which are disk seeks if the striding occurs on the disk-file 
end of a copy between main memory and disk. Striding 
can also incur minor overhead when it occurs between 
main memory and GPU memory. Note also that, whereas 
support for strided copies is generally already built into 
GPU drivers, it’s not built into the operating system’s file 
I/O interface and therefore must be explicitly coded into 
the benchmark using some combination of reads, seeks, 
and buffering.

The computation proceeds one output tile at a time, 
in row-major order. For each output tile, the program 
determines the input data required and loads that rect-
angle of data from main memory to the GPU over the 
PCI-E bus. The filter is then applied and the program 
reads the data back from the GPU to main memory over 
the PCI-E bus.

Performance evaluation
We used the Lanczos filter to assess the potential for 

accelerating LSST image-processing tasks using GPUs. 
Our investigation comprised numerous executions of the 
benchmark and the original SWarp application. Figure 
2 plots performance, as measured by the rate of data 
output in MBps. For each execution, we chose a scale 
factor, which is the ratio of output pixels to input pixels, 
and a kernel size, which is the number of input pixels 
combined to generate each output pixel.

GPU compute. The first column indicates the pure 
computational rate of our GPU-based kernel implemen-
tation. In this execution, we kept the image resident in 
memory and disabled data transfers to and from the 
GPU. In lieu of data download from the GPU, we flushed 
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Figure 2. Image resampling bandwidths. The graph shows the rate of generated output 
pixels in logarithmic scale as a function of upsampling scale factor and kernel size.
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the pipeline to allow accurate measurement of the total 
compute time. 

Predictably, this rate decreases with increasing ker-
nel size. What might be more surprising is the dramatic 
increase in compute performance as the scaling factor 
increases. This is attributable to the highly effective 
2D data (texture) cache on the GPU. As the scale fac-
tor increases, the filter repeatedly uses the same neigh-
borhood of input pixels to generate a neighborhood of 
output pixels. 

The GPU compute column most closely relates to 
peak performance of the graphics hardware, analogous 
to peak floating-point performance from a general-pur-
pose CPU. It exceeds 1 GBps for some kernel-size and 
scaling-factor combinations.

GPU + PCI-E. The second column reports performance 
when taking into account data transfers to and from the 
GPU over the PCI-E bus. The time to read data back 
from the GPU to the host generally dominates because 

there’s more data to read back 
from the GPU than to send, due 
to the upsampling factor and 
the doubling in bits (from 16 to 
32) per pixel, and
raw download rates are typi-
cally slower than upload rates. 

Performance exceeds 100 MBps for 
all combinations of kernel size and scale factor, with the 
best performance at 259 MBps for a kernel of one and 
scale factor of 16.

GPU + PCI-E + disk. The third column reports the 
benchmark’s overall performance on out-of-core data, 
using a 2D strip representation to load and store the 
data. The maximum output achieved is 73 MBps. For 
the lowest scale factor of 1, this significantly decreases to 
around 40 MBps, presumably because the filter requires 
significant input data as well as output data bandwidth, 
and the input and output files are sharing the same two-
disk redundant array of independent disks (RAID). 
Experimentally disabling reading of input data from 
disk increased performance to around 70 MBps.

SWarp. To measure real SWarp performance, shown 
in the fourth column, we eliminated as many computa-
tions as possible that are extraneous to the benchmark 
computation. In particular, we configured the resam-
pling to perform in the application’s PIXEL coordinate 
system, thus avoiding use of any of the dozens of more 
complex astrometric coordinate transformations pos-
sible. The range of speedups of the GPU implementation 
compared to SWarp ranged from 9 to 30 times. 

The need for oversampling and high-quality kernels 
to produce excellent results argues that the tests with 
larger scale factors and speedups are most applicable in 
practice. SWarp can also be executed in parallel on mul-

•

•

tiprocessor and multicore machines, and it exhibited a 
nearly two-times speedup over the listed results when 
run on the test machine’s two processors. 

Conclusions. The Lanczos filter within the original 
SWarp implementation is purely CPU-bound; using the 
GPU completely eliminated the CPU bottleneck. For 
images that can fit into main memory such as small tiles 
of LSST imagery, the DRAM ↔ PCI-E communications 
bandwidth dominates performance. For out-of-core 
imagery such as large tiles or the complete sky image, the 
Lanczos filter is I/O-bound. The benchmark thus dem-
onstrates that using a commodity-parallel architecture 
such as the GPU can provide substantial speedup over a 
single-CPU implementation, up to the point where disk 
I/O becomes the primary bottleneck. For the current test 
system, the I/O limited the speedup to 30 times.

Unstructured Text Processing
Language classification is an increasingly important 

task on the World Wide Web, where 
a growing number of documents 
are in a language other than Eng-
lish. It finds uses in search-engine 
indexing, spam-filtering heuristics, 
information retrieval, text mining, 
and other applications that apply 
language-specific algorithms. Lan-
guage classification is a key step in 
processing large document streams 

and is data-intensive.
While many solutions run on general-purpose proces-

sors, the growth of document sets has far surpassed micro-
processor improvements afforded by Moore’s law. FPGA-
based systems offer an alternative platform that enables 
the design of highly parallel architectures to exploit data 
parallelism available in specific algorithms.

Language classification using n-grams
A well-known technique to classify a text stream’s lan-

guage is to create an n-gram profile for the language.3 
An n-gram is a sequence of characters of length exactly 
n. N-grams are extracted from a string or a document 
by a sliding window that shifts one character at a time. 
An n-gram profile of a set of documents is the t most 
frequently occurring n-grams in the set. The probability 
that an input document is in a particular language is 
determined by the closeness of the document’s n-gram 
profile to the language profile.

In this work, we used Bloom filters4 to improve an 
existing FPGA-based n-gram text categorizer, the HAIL 
(hardware-accelerated identification of languages) 
architecture,5 to build a highly scalable design. We 
implemented our design in VHDL on the XtremeData 
XD1000 development system. The time to select, imple-
ment, debug, and performance-tune the benchmark was 
approximately six weeks. 

Using a commodity-parallel 
architecture such as the 

GPU can provide substantial 
speedup over a single-CPU 

implementation.
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An n-gram-based classifier builds a document’s  
n-gram stream by taking a sliding n-character window 
across the text. It generates a language’s n-gram profile 
by taking the top t n-grams—we selected 5,000 for our 
benchmark—from a representative sample of documents 
in that language. The classifier selects the language of an 
unknown document by comparing its n-gram profile to 
all the language profiles and selecting the language with 
the highest match count.

Our design accomplishes n-gram tabulation using par-
allel Bloom filters as a probabilistic test for set member-
ship. It streams the n-gram to k parallel hash functions, 
whose outputs address k separate 1 × m bit memories. 
To add a new n-gram, the design sets each addressed bit 
to 1. To test membership, the design reads all addressed 
bits, and finds an n-gram present in the language profile 
if all locations have 1 at that address. This technique 
can give false positives due to the hash function but 
won’t generate false negatives. Our parallel Bloom filter 
implementation uses 64 Kbits (k = 4 hash functions, m 
= 16-Kbit memories). The average accuracy rate for this 
configuration is 99.45 percent. 

Our design exploits parallelism at multiple levels. 
First, there is a separate memory for each hash function, 
so that all the hash functions can be applied in parallel. 
Second, the memories are dual-ported, so that two dif-
ferent n-grams can be tested in a single clock cycle, as 
Figure 3a shows. Finally, our design duplicates p classi-
fiers four times, enabling eight n-grams to be processed 
every clock cycle, as Figure 3b shows.

Performance evaluation
We measured our implementation’s performance 

using the JRC-Acquis Multilingual Parallel Corpus, 
v3.0 (http://wt.jrc.it/lt/Acquis).6 This corpus is the body 
of European Union law applicable to the EU member 
states available in 22 European languages. We used 10 
languages: Czech, Slovak, Danish, Swedish, Spanish, 
Portuguese, Finnish, Estonian, French, and English. For 

our tests we parsed a subset of the corpus containing 
only the documents’ text bodies.

There was an average of 5,700 documents for each 
language, with an average of 1,300 words per docu-
ment. The average size of a single language corpus was 
48 Mbytes, and an individual document averaged 10 
Kbytes. We used 10 percent of the corpus as the train-
ing set for each language and tested the classifier on the 
remaining documents. To measure the system’s through-
put, we used the configuration with k = 4, m = 16 Kbits 
accepting eight n-grams per clock, and running at a 
clock speed of 194 MHz.

We measured the wall clock time for the transfer of 
documents and receipt of results in memory. The mea-
sured time didn’t include the Bloom filter programming 
time, which is a setup cost that can be amortized over 
large runs. Also, we didn’t include the preprocessing step 
to generate the n-gram profiles in the timing because it’s 
a one-time cost prior to classification.

Figure 4 compares various throughput rates for our 
FPGA-based design as well as software only.

FPGA only. The theoretical rate at which our design 
can accept document n-grams is 194 MHz × 8 = 1,552 
million n-grams per second. Because each n-gram corre-
sponds to a byte in the input stream, our design can per-
form language classification at a peak rate of 1.4 GBps. 
This is well within the 1.6-GBps bandwidth provided 
by the HT bus. However, the HT core of the Xtreme-
Data machine we used achieves only a maximum of 500 
MBps and so limits the practical performance that our 
design realizes. 

FPGA + HT and FPGA + HT + I/O. By using asynchro-
nous direct memory access (DMA) in a multithreaded 
communications interface to transfer data and control 
between the Opteron CPU and FPGA, we achieved a 
throughput rate of 470 MBps. When we included the 
time to read documents from storage in the measure-
ments, the throughput was 93 MBps on a NAND flash 
drive and 55 MBps on a local Serial ATA (SATA) disk.
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Compared to HAIL, our equivalent FPGA + HT 
hardware runs 1.45 times faster on 10 languages. While 
HAIL can classify up to 255 languages at this rate, our 
hardware is limited to between 10 and 30 languages by 
the number of on-chip embedded RAMs. The advan-
tage of our design is that it’s both flexible and scalable, 
allowing the designer to trade off the number of hash 
functions with memory size. Also, in contrast to HAIL, 
it uses only on-chip memory, eliminating the need for 
specific external memory configurations.

Software. To compare the performance of our Bloom-
filter-based classifier to that of software, we measured 
the system throughput of mguesser (www.mnogosearch.
org/guesser), an optimized version of the n-gram-based 
text categorization algorithm. We ran mguesser on a 
2.4-GHz AMD Opteron processor with 16 Gbytes of 
memory, using 10 languages for identification and 81-
Mbyte-size documents. 

Mguesser’s average throughput was 5.5 MBps, which 
doesn’t include the time to read the documents from 
disk; these were cached in memory before a timing run. 
In comparison, our FPGA + HT implementation is 85 
times faster, and our FPGA + HT + I/O implementation 
is 17 times faster, than mguesser’s compute-only time.

Conclusion. As with the image-resampling bench-
mark, this experiment showed that coprocessor tech-
nology can eliminate the CPU bottleneck of compute-
intensive data analysis applications at a reasonable cost 
in development time.

FLASH MEMORY I/O DRIVE
To effectively use coprocessors, the memory and I/O 

systems must deliver and store data at the coproces-
sor’s rate. Many data-intensive algorithms interact with 
large data sets that can’t be stored cost-effectively in 
main memory. While coprocessors with application-
specific caches can accelerate in-memory computation, 
the bandwidth gap between volatile and persistent 
memory can greatly diminish the coprocessor advan-
tage, causing I/O operations to dominate many such 
algorithms’ runtime.

Disk storage has dramatically increased in capacity 
during the past decade, achieving a 60 to 100 percent 
compound annual growth rate between 1996 and 2004. 
However, latency and bandwidth have lagged, and access 
times for rotating media are likely to stay flat for the 
foreseeable future. In addition, large collections of disk 
drives incur costs in reliability and power usage.

Flash architectures
Strong consumer demand for music products with 

embedded mass storage has driven memory manufac-
turers to significantly lower the price and increase the 
capacity of flash memory chips. Flash memory is a form 
of nonvolatile storage in which charge trapped on a float-
ing-gate transistor represents a data value.

Charge is initially deposited on each transistor in a 
section of the chip when an erase operation is performed, 
then removed when a write operation of a logical “0” 
occurs. Once a gate’s charge is removed, it can’t be 
replenished until an erase operation takes place. Given 
that erase operations can only be performed on large 
regions (128 Kbytes) of a chip at a time, a flash device 
can be viewed as an erasable form of write-once, read-
many (WORM) storage.

Memory vendors arrange floating-gate transistors in 
large arrays of either NOR or NAND gate structures. 
While NOR flash chips provide random byte access to 
the user, NAND flash chips feature higher capacities and 
better programming times.

The drawback of NAND flash chips is that they oper-
ate on data in page-sized quantities (2 Kbytes). Each time 
a hardware controller issues a read request to a flash 
memory chip, the flash memory chip must locate the 
corresponding page in its storage array and transfer the 
entire page to a special buffer before the data can be 
moved off chip. This internal data transfer can take as 
long as 25 µs. Once the transfer completes, the data can 
be streamed out of the flash chip sequentially at a rate of 
40 MBps—that is, 50 µs for a full page.

To increase yields, memory vendors typically pack 
multiple flash dies on a single chip. For example, a 16-
Gbit flash chip from Micron Technologies consists of 
a stack of four 4-Gbit die. To increase capacity for a 
given printed circuit board (PCB) footprint, multiple 
flash chips can be stacked on top of each other using 
simple spacer devices. Consequently, a single socket on a 
PCB can house a stack of 16 or more flash memory dies. 
This vertical parallelism provides an opportunity to hide 
access time, as each die can be issued its own memory 
transaction, provided that no two dies simultaneously 
assert data on the flash pins. 
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Manufacturers can likewise use horizontal parallelism 
to scale bandwidth by using multiple flash memory chip 
stacks on a PCB and striping data across the stacks. The 
fact that flash memory chips employ a low pin count—15 
pins for the user interface—makes it possible to utilize 
a large number of stacks when flash-controller logic is 
implemented with an FPGA or application-specific inte-
grated circuit.

ioMemory benchmark
Given the bandwidth and latency potentials of flash 

memory, multiple vendors are building hard-drive 
replacement products out of NAND flash parts. In 2007, 
Fusion-io, which is developing ioMemory, a PCI-E-based 
product, provided us with access to a beta prototype fea-
turing 32 Gbytes of NAND flash storage built on 16 sin-
gle-chip stacks of 2-Gbyte flash chips. A midsized Xilinx 
FPGA holds the low-level flash controller hardware and 
the PCI-E interface to the host. Fusion-io also provides 
host device drivers to make the ioMemory appear to the 
Linux kernel as a standard block device.

We performed multiple benchmarks to observe the 
ioMemory’s low-level performance details. When sequen-
tially streaming through large files, it yielded 446 MBps 
in read tests and 378 MBps in write tests. These speeds 
were roughly four times faster than a pair of SATA hard 
drives arranged in a software RAID 0. However, a ran-
dom read test demonstrated the true potential of flash 
storage. In this test, multiple threads issued block read 
requests to random locations within a 16-Gbyte file. 
While the random access patterns limited the SATA hard-

drive RAID to 30 MBps, the ioMemory achieved 
328 MBps.

Figure 5 presents the performance results for 
different burst sizes and numbers of threads. 
As these numbers indicate, moving from one 
to two threads with the ioMemory gives a 
sizable performance gain. This gain can be 
attributed to the fact that the ioMemory can 
process a small number of transactions con-
currently, thereby overlapping access times. 
Performance decreased when more than two 
threads were employed. Fusion-io attributed 
this drop to limitations in the beta hardware’s 
DMA controller that will be fixed in the final 
product. Performance also dropped when 
bursts exceeded 128 Kbytes. This drop can 
be attributed to fragmentation, as the card 
internally stores up to 128 Kbytes of data con-
tiguously. More recent versions of ioMemory 
promise even better performance, as the hard-
ware has been scaled from 16 flash stacks to 
20. This geometry scales theoretical read per-
formance from 640 to 800 MBps.

I/O-intensive sparse graph analysis
To investigate ioMemory performance on I/O-domi-

nated applications, we developed a graph analysis bench-
mark motivated by real-world applications of semantic 
graph analysis, which is used to discover relationships 
in large data sets. Graphs that represent interaction in 
semantic networks can become extremely large, requir-
ing hundreds of millions of nodes. In practice, the cur-
rent size limit for graph analysis is 108 nodes, while the 
projected need is 1012. 

LLNL first demonstrated breadth-first search of a 3 
× 109 node graph on the IBM BlueGene/L, the world’s 
fastest supercomputer.7 A random graph of this size is 
the largest that can fit in the machine’s 32,768-node 
memory. Subsequently, LLNL processed a 1010-node 
scale-free graph using a very different approach and 
architecture. The breadth-first search was written as 
SQL queries into a relational database that stored edges 
in a table, and it used a 648-node Netezza server.

Our benchmark graph algorithm performs out-of-core 
level-set expansion, a variant of breadth-first search. It 
runs on a standard Linux machine and uses the ext3 
file system. While graph traversal can result in random 
reads to the file system, the out-of-core algorithm uses an 
optimized file-based graph layout that attempts to place 
adjacent vertices in the same disk block. 

The algorithm’s ingest phase builds the graph. It reads 
edges from external storage and places them in an in-
memory edge buffer, from which it forms adjacency lists. 
It then places these lists in an in-memory adjacency buf-
fer, and when the buffers become full, merges them into 
two files, a partition index file (PIF) and a partition file 
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(PF). The PIF holds vertices and pointers to their adja-
cency lists in the PF. In the search phase, the level-set 
expansion benchmark reads the PF and PIF to derive 
level set n + 1 from level set n.

Our experiment used two real graphs, the Inter-
net Movie Database (IMDB) graph (www.iruimte.
nl/graph/imdb.txt) with 3.5 million vertices and the 
Computer Science Bibliograph (DBLP; http://dblp.unit-
rier.de/xml) with 1.2 million vertices and a synthetic 
scale-free graph with 1 million vertices and an average 
degree of 5. We measured runtime using six different 
block sizes for the graph data file (256, 512, 1,024, 
2,048, 4,096, and 8,192 bytes) and two different loca-
tions for the input data sets and temporary files—a 
local SATA disk and ioMemory. The local disk was a 
Seagate Barracuda 7,200 rpm (ST380815AS), with 3 
Gbps SATA volume, capable of streaming 60 MBps to 
Linux applications. 

The ingest phase, which reads in the raw graph and 
writes out the optimized graph layout, doesn’t benefit 
from the NAND flash drive. However, the read-domi-
nated search phase showed up to a factor of two improve-
ment in runtime when the data set and graph files were 
accessed from the ioMemory. Figure 6 compares the run-
time of the graph benchmark’s search portion for the 
three graphs. Runtime is lower for all three graphs, with 
the DBLP graph showing the greatest benefit—an aver-
age speedup of a factor of two. Although the ioMemory 
bandwidth tests showed an order of magnitude improve-
ment between disk and ioMemory random reads, the 
measured speedup reflects the fact that the graph algo-
rithm can exploit vertex locality in memory and there-
fore doesn’t need to access the drive continuously.

D ata-intensive problems challenge conventional 
computing architectures with demanding CPU, 
memory, and I/O requirements. Our experiments 

to date suggest that emerging hardware technologies 
to augment traditional microprocessor-based comput-
ing systems can deliver 2 to 17 times the performance 
of general-purpose computers on a wide range of data-
intensive applications by increasing compute cycles and 
bandwidth and reducing latency. 

GPU and FPGA coprocessors can deliver one to two 
orders of magnitude increase in compute cycles through 
massive parallelism and application-specific caches, 
while high-performance I/O systems based on solid-state 
nonvolatile memory offer one to two orders of magni-
tude improvement in latency over enterprise-class hard-
disk drives. 

Our experiments demonstrate the advantages of 
using a coprocessor and NAND flash separately. In 
addition, the language classification benchmark fur-
ther shows that combining the two technologies offers 
a substantial benefit—a 1.75 speed increase by using 

the ioMemory rather than local disk to stream data 
to the coprocessor. Speedup was limited by having 
to stage the data in the CPU’s memory before for-
warding it to the coprocessor. Our future work will 
focus on methods to bypass the CPU memory and pass 
data directly from the flash device to the coproces-
sor, thereby letting the coprocessor access the data at 
closer to the raw NAND array rate. ■
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